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We study the combined counting statistics of two capacitively coupled transport channels. In particular, we
examine the conditions necessary for utilizing one channel as detector sensitive to the occupation of the other.
A good detector fidelity may be achieved in a bistable regime when the tunneling rates through the two
channels are vastly different—even when the physical back action of the detector on the probed channel is
large. Our methods allow to estimate the error of charge counting detectors from time-resolved current
measurements—which have been obtained in recent experiments—alone.
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Quantum transport is a generic example of nonequilib-
rium quantum dynamics.1 A low-dimensional quantum sys-
tem �e.g., quantum dots,2 molecules,3 nanotubes,4 etc.� is
typically coupled via particle exchange to multiple reservoirs
held at different equilibria. The detection of stochastic par-
ticle transfer into a reservoir yields the full counting statistics
�FCS�.5 The FCS provides a tool to access system properties
via an indirect measurement. The technique of n-resolved
master equations6 conveniently allows to extract the FCS
from microscopic models �see, e.g., Ref. 7�. Recently, the
value of this approach has been demonstrated experimentally
by capacitively coupling a single quantum dot �QD� to a
quantum point contact �QPC�.8 Here, we demonstrate that, in
principle, also two capacitively coupled QDs should show
similar behavior as the QPC-QD configuration in certain pa-
rameter limits. However, the simplicity of our model enables
us to estimate the physical detector back action and the de-
tection error from the FCS.

We consider a system composed of two nearby
two-terminal single resonant level systems9 A and B
�compare Fig. 1�a�� HS=�AdA

†dA+�BdB
†dB+UdA

†dAdB
†dB,

where �A/B denote the level energies of the single
levels and U models Coulomb interaction. The
system is coupled to four fermionic reservoirs via
HSB=�katka,AdAcka,A

† +�katka,BdBcka,B
† +H.c., where tka,A/B de-

note tunneling rates to the adjacent leads a� �L ,R�. We will
use subsystem A as a detector for the state of subsystem B.
Transport through each level is enabled by applying nonva-
nishing bias voltages and the two transport channels influ-
ence each other by the Coulomb interaction U.

Since we are interested in the charge FCS not only at one
junction but at the interplay of the two channels, we intro-
duce two virtual detectors in the tunneling terms associated
with right leads �see also Ref. 10�. Following the
Born-Markov-Secular11 approximation scheme, we arrive at
an �nA ,nB�-resolved master equation of the form

�̇�nAnB� = L00�
�nAnB� + L+0��nA−1,nB� + L−0��nA+1,nB�

+ L0+��nA,nB−1� + L0−��nA,nB+1�, �1�

where ��nAnB��	nA ,nB
�
nA ,nB�, which couples only the di-
agonals of the density matrix to each other. The total system
�QDs and virtual detectors� density matrix can at all times
be written as ��t�=�nA,nB

��nAnB��t� � 
nA�	nA
 � 
nB�	nB
,

such that the probability to measure nA tunneled particles in
the detector channel and nB tunneled particles in the system
channel after time t is given by PnAnB

�t�=Tr���nAnB��t��
�measurement postulate�. Performing a two-dimensional
Fourier transform of Eq. �1� via ��� ,� , t�
��nA,nB

��nAnB��t�einA�+inB�, we obtain a Fourier-transformed
Liouvillian �̇�� ,� , t�=L�� ,����� ,� , t� with two counting
fields L�� ,���L00+e+i�L+0+e−i�L−0+e+i�L0++e−i�L0−.
This equation can be solved formally, and for a given initial
condition ��0�=�0

�00�
� 
0�	0
 � 
0�	0
, the density matrix

��nAnB���t� can be obtained from the inverse Fourier trans-
form. With the “superjump” superoperator,

J�nA,nB��t� �
1

4�2�
−�

+�

eL��,��t−inA�−inB�d�d� �2�

we obtain after time t for the density matrix ��nA,nB��t�
=J�nA,nB��t��0

�00�. Measuring the number of tunneled particles
through both channels at this point will collapse the density
matrix again. The explicit form of the Liouvillian considered
in this work is given by a special bistable case of a size-

FIG. 1. �Color online� �a� Spatial sketch of the physical setup.
Tunneling is described by rates � and �, respectively. Detectors are
placed at the right junctions—with counting fields � and �. Cou-
lomb interaction U leads to an effective shift of the dot levels �up-
per �orange� dots in panels �b�–�f�, labels in panel �d��, which in-
fluences the current through each channel. ��b�–�f�� Band-scheme
sketches with the associated Fermi functions fL/R

A/B�	� �labels in
panel �b�� for different bias and temperature configurations �see
text�.
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scalable variant12—with an additional counting field �.
We consider only the case of unidirectional transport as

shown in Figs. 1�b�–1�f�. All right-associated Fermi
functions vanish at the energy scales of the system fR

j �� j�
= fR

j �� j +U�=0 �with j� �A ,B��, and the Liouvillian is given
by L�� ,��=�LA���+�LB��� with the flat tunneling rates
��2��k
tka,A
2
�	−	k,a� and ��2��k
tka,B
2
�	−	k,a�. In
the basis �00,00 ,�10,10 ,�01,01 ,�11,11, the superoperators read

LA � A��A� 0

0 A��̄A�
�, LB � − B1 + B2���

+ B1 − B2�0�
� ,

A�x� � − fL
A�x� ei� + f̄ L

A�x�

+ fL
A�x� − 1 − f̄ L

A�x�
� ,

B1 � Diag�fL
B��B�, fL

B��̄B�� ,

B2��� � Diag�ei� + f̄ L
B��B�,ei� + f̄ L

B��̄B�� , �3�

where f̄ L/R
j �x��1− fL/R

j �x� and �̄ j �� j +U. Bistability occurs
when, e.g., �→0 and fL

A��A�� fL
A��̄A� since the block struc-

ture of the Liouvillian supports two different currents �and
stationary states� in this case.12

Current trajectories. When channel B is at infinite bias
and at sufficiently large temperatures kBT�U, the left-
associated Fermi functions fL

A��A� and fL
A��̄A� will assume in-

termediate values between zero and one �see Fig. 1�b��,
which yields two different currents through A depending on
whether B is occupied or not. Ignoring the number of
transferred charges through channel B, the probability
of obtaining nA charges after time �t equates to PnA

��t�
=Tr��nB

J�nA,nB���t��0��Tr�JA
�nA���t��0�. That is, to obtain a

trajectory of current measurements performed equidistantly
at intervals �t numerically, a random number according to
the distribution PnA

��t� must be drawn. The outcome of this
then corresponds to a measurement of nA particles �with cur-
rent IA�nA /�t�. For simplicity, we exploit the translational
invariance of Eq. �1� and shift nA to zero after each measure-
ment. However, for the subsequent evolution, one now has to
use the normalized density matrix ��nA� as initial condition,
which leads to a temporal correlation of the measured cur-
rents, see Fig. 2. In principle, also for unidirectional transport
the number of different outcomes M� �0,1 ,2 , . . .� is infinite,
but fortunately, there exists a natural cutoff as for nA���t
the operators JA

�nA���t� become exponentially small. The tra-
jectory in Fig. 2 is very similar to results obtained for QPCs.8

The blips from low to high currents �arrows� should there-
fore indicate single charges tunneling from channel B to its
right junction. However, as tunneling through channel A is
also a stochastic process, jump events may, in principle, be
missed �compare also the inset�. Therefore, this raises the
question of detector fidelity and back action. In the follow-
ing, we will investigate this for configurations �c�–�f� in
Fig. 1.

Unperturbed level �Fig. 1�c��. In this limit, the current
through A is blocked completely, such that the detector is
turned off. With the replacements fL

A��A�= fL
A��̄A�=0 and

fL
B��B�= fL

B��̄B�=1 in Eq. �3�, we obtain for the Laplace trans-

form M̃�� ,� ,z��Tr��z1−L�� ,���−1�̄� of the moment-
generating function �MGF�,

M̃��,�,z� = M̃B��,z� =
�3 + ei��� + 2z

2�z2 + 2�z − �ei� − 1��2�
, �4�

from which one may analytically12 deduce the probability
distribution of a single resonant level in the symmetric infi-
nite bias limit.

Infinite bias �Fig. 1�d��. When both channels are
held at infinite bias—replacements fL

A��A�= fL
A��̄A�=1 and

fL
B��B�= fL

B��̄B�=1 in Eq. �3�—the detector cannot distinguish
the different states of the probed system. From the
exact matrix exponential of the Liouvillian we obtain
PnAnB

�t�= PnA
�t�PnB

�t�, where each probability distribution
corresponds to that of a single resonant level12 �with �→�
for channel A�. In Laplace space, this becomes visible by

considering the reduction to Eq. �4� via M̃�0,� ,z�=M̃B�� ,z�
and similarly M̃�� ,0 ,z�=M̃A�� ,z�. Clearly, we obtain for the
first and second �long-term limit� cumulants of the
detector �current and noise� 		nA��= �t

2 and 		nA
2��→ 1

8 + �t
4 ,

and for the probed system 		nB��= �t
2 and 		nB

2��→ 1
8 + �t

4 .
From the factorization of the probability distributions it fol-
lows also that the cross correlations vanish at all times
		nAnB���	nAnB�− 	nA�	nB�=0.

Charge detector limit �Fig. 1�e��. When fL
A��A�=1,

fL
A��̄A�=0, and fL

B��B�= fL
B��̄B�=1 in Eq. �3�—the detector is

bistable,12 which can be used to distinguish the two different
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FIG. 2. �Color online� Trajectory for configuration in Fig. 1�b�
for 1000 current measurements at time intervals of �t. Background
lines display the currents and widths �shaded regions� for the single
resonant level evaluated at the effective QD level one obtains for
empty �high-current� or filled �low-current� channel B. Temperature
and chemical potentials chosen such that fL��A�=0.612 and
fL��̄A�=0.181. Inset �parameters ��t=10, ��t=0.1, �t=100.0
arbitrary units� shows the correlation of both �coarse-grained� cur-
rents for the configuration in Fig. 1�e�. When the detector current
�solid black� rises, one most often also observes a spike �single
charge� in the current through channel B �dashed red, rescaled�.
However, due to stochastic behavior of the detector, jump events
may be missed completely �bold red arrow�.
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states of channel B. When channel B is occupied, current
through A is blocked completely, whereas it is maximal �at
its infinite bias value� otherwise. We find that the Laplace

transform of the MGF fulfills M̃�0,� ,z�=M̃B�� ,z�—compare
Eq. �4�—which demonstrates that here the physical action of
the detector on the probed system vanishes. In contrast, the
physical influence of the system on the detector is not neg-

ligible, which is demonstrated by M̃�� ,0 ,z��M̃A�� ,z�.
Therefore, the charge detector �phase detection would re-
quire coherences� will play an informational role �measure-
ment postulate� without physical back action on the system.

We obtain for the first cumulants 		nA��= �t
4 , 		nB��= �t

2 ,
whereas the second cumulants asymptotically approach the
long-term limits,

		nA
2�� →

1

32
1 −

�2

�2� +
3�2 + 3�� + �2

16��� + ��
�t ,

		nB
2�� →

1

8
+

�

4
t, 		nAnB�� → −

�

16�� + ��
, �5�

i.e., there exists a slight negative cross correlation between
the two channels, which surprisingly saturates.

In order to operate the channel A as a detector for the FCS
of channel B, we need to scan channel A at much larger rates
than B ����. In particular, to obtain a meaningful detector
current �associated with a transiently bimodal12 distribution
PnA

��t��, we require ��t1 and to see the slow switching
in time-resolved current measurements it is also necessary
that ��t�1. Then, measuring a vanishing detector current IA
within a time interval �t indicates with high probability that
system B is occupied and measuring a nonvanishing detector
current indicates an empty channel B.

To investigate within which limits on �, �, and �t this
simplistic view is valid, we introduce the coarse-grained
superoperators JLL�J�00���t�, JLH��nB�1J�0nB���t�,
JHL��nA�1J�nA0���t�, and JHH��nA,nB�1J�nAnB���t�, corre-
sponding to a vanishing �L� or nonvanishing �H� current
through channels A and B. That is, the L /H-discrimination
threshold is set here independent of �t. From Eq. �2�, we
may analytically obtain their Laplace transforms by perform-
ing the summation in frequency space �not shown�. We may
then create coarse-grained current trajectories with both de-
tectors A and B �leading to four different measurement out-
comes M� �LL ,LH ,HL ,HH��, see inset of Fig. 2. Obvi-
ously, the correlation between blips of current IA and spikes
of current IB is not perfect. The detector result may fail, as,
e.g., tunneling charges through channel B may be missed.

Without the FCS of channel B, the error probability
of the detector can be calculated from the averaged joint
probabilities of measuring a large current in channel A and a
particle in channel B and measuring a vanishing current
through A in combination with no particle in B: Perr

A ��t�
�Tr�dB

†dBJA
H�̄�+Tr��1−dB

†dB�JA
L�̄�, where �̄ is defined via

L�0,0��̄=0, JA
H�JHL+JHH, and JA

L �JLL+JLH. Its
Laplace transform equates to

P̃err
A �z� =

1

2z
−

�2�2�2� + z�2 + ��7� + 4z��
8�� + ��Pnum�z�

�6�

with Pnum�z��2��2��+��+2���+���4�+��z
+ �2�+���2�+5��z2+4��+��z3+z4. From the Laplace
transform we can directly conclude that for too short or too
long measurement times the detector result will be useless:
lim�t→0 Perr

A ��t�= 1
2 and lim�t→� Perr

A ��t�= 1
2 . An intuitive ex-

planation is that, for too short measurement times, the two
peaks of the corresponding bimodal distribution will not
have well separated and measuring a vanishing particle num-
ber �current� nA��t� is still possible even when channel B is
empty. In contrast, for too large measurement times, we may
obtain an average current over several cycles of loaded and
empty channel B. For intermediate measurement times �t
however, we observe a pronounced minimum of Perr

A ��t�, see
Fig. 3.

Dynamical channel blockade �Fig. 1�f��. Here, both
probed system �B� and detector �A� may be seen as bistable
systems,12 depending on whether � or � dominate, respec-
tively. When occupied, both transport channels block the cur-
rent through the other one completely.13 With the replace-
ments fL

A��A�=1, fL
A��̄A�=0, fL

B��B�=1, and fL
B��̄B�=0 in Eq.

�3�, it becomes obvious that the doubly charged state 
11�
will not be occupied. When we choose the junctions to A and
B and the corresponding tunneling rates identically ��→�
and �→��, we recover the formal Liouvillian structure in
Ref. 14 for a two-terminal two-level system. The Laplace

transform of the MGF M̃�� ,� ,z� may also be obtained ana-
lytically, and we find that the interactions and back actions
between system and detector are not negligible, exemplified

FIG. 3. �Color online� Detector error probability in the quantum
detector limit �Eq. �6�, solid lines� and in the dynamical channel
blockade limit �Eq. �8�, dashed lines� for varying ratios of average
tunneled detector and system charges � /�. For a too small or too
large number of tunneled detector charges, the detector result is
practically useless, whereas for an intermediate number, a pro-
nounced minimum �note the logarithmic plot� of the error probabil-
ity is found. Thin curves in the background mark the trajectory of
the minimum. Asymptotic formula refer to solid lines �c�—dashed
curve asymptotics would have slightly different prefactors. Filled
symbols yield rough error estimates for experiments.
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by M̃�0,� ,z��M̃B�� ,z� and M̃�� ,0 ,z��M̃A�� ,z�. From the
MGF we obtain for the first cumulants 		nA��= �t

3 ,
		nB��= �t

3 , and the second cumulants approach the
asymptotic limits,

		nA
2�� →

8�2 − 2�� − 4�2

81�2 +
5� + 2�

27�
�t ,

		nB
2�� →

8�2 − 2�� − 4�2

81�2 +
2� + 5�

27�
�t ,

		nAnB�� → + 2
�2 − �� + �2

81��
−

� + �

27
t , �7�

such that the cross correlations do now also appear in the
currents. We may also here introduce the superoperators cor-
responding to either zero or more than zero particles leaving
either transport channel, and the current trajectories �not
shown� are similar to the inset of Fig. 2. The Laplace trans-
form Perr

A ��t� is obtained similarly,

P̃err
A �z� =

z2�3� + 2z� + ���2 + 6�z + 4z2�
3z�� + z��z�� + z� + ��� + 2z��

, �8�

and we can directly conclude that for too short or too long
measurement times the detector result will be useless since
lim�t→0 Perr

A ��t�= 2
3 and lim�t→� Perr

A ��t�= 1
3 . For finite mea-

surement times the error probability will show a pronounced
minimum, see Fig. 3. Therefore, measurements on A may
give reliable information on the state of B �which differs
strongly from its uncoupled dynamics�.

Detector errors and experiments. Equations �6� and �8�
generate a map of detector fidelity �Fig. 3�. The detection
error only depends on the two dimensionless variables ��t

�number of detector charges during the measurement time�
and � /� �ratio of system to detector currents� and can be
made extremely small. The striking similarity of the detector
error probability for ideal and nonideal detectors �also the
similarity of the current trajectory in Fig. 2 with experiments
for QPCs �Ref. 8�� indicates that the simple dependence on
detector and system charge throughout is generic for
Idet

min� Idet
max. An error estimate taking into account a realistic

�t scaling of the Ilow / Ihigh discrimination threshold, asym-
metric and energy-dependent tunneling rates, multiple levels,
etc., would be much more accurate, but for a crude estimate
we may link experimental parameters with those of our
model. The width of the experimental current divided by its
mean value will in the high-bias limit yield the average num-
ber of tunneled detector charges during the measurement
time via �Idet

max / Idet
max�1 /���t, and the ratio of mean system

current �number of blips divided by time� and mean detector
current yields Isys / Idet

max�� /�, and we obtain error probabili-
ties of approximately 10−5 per measurement for Refs. 8, 15,
and 16.

Conclusions. Even with strong physical back action the
detector may yield reliable results for the instantaneous oc-
cupation of channel B �with an altered dynamics�. To decide
whether the used detector strongly back acts on the probed
system, it is therefore more useful to observe the scaling of
the channel cross correlations. The smaller the scaling coef-
ficient of the cross cumulant in time, the smaller is the de-
tector back action. In order to estimate the fidelity of a single
current measurement from Fig. 3, we propose to use the
characteristics of time-resolved experimental detector current
trajectories.
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